中1数学 2019年度 夏期講習 幾何ダイジェスト 宿題解答 § 4 合同の利用と平行四辺形条件

[仮定] ABCD は平行四辺形......① DCEF は平行四辺形......②

「結論」ABEF は平行四辺形

$$67 \downarrow 9$$
, $AB = FE$8

⑤8より、四角形 ABEF は

(1組の向かい合う辺が平行かつ等しい)ので平行四辺形

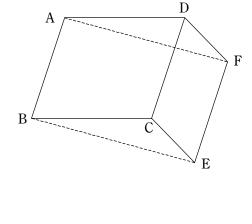
(q.e.d.)

H4.2

[仮定] ABCD は平行四辺形......① BP = PQ = QD②

[結論] APCQ は平行四辺形

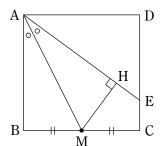
[証明その1]


①より、AB // DC なので、

②
$$\$$
 $\$ $\$ $\$ BP = DQ

同様に、 \triangle BCP と \triangle DAQ において、

$$BP = DQ \qquad ...$$


⑦⑪より、2組の向かい合う辺が等しいので、APCQ は平行四辺形

「証明その1'〕 ①より、AB // DC なので、 ∠ABP = ∠CDQ (錯角定理)④ ⑥より、 ⑥より、 ∠APB = ∠CQD (合同の対応角) ⑧ ここで、 $\angle APQ = 180^{\circ} - \angle APB$ (平角定理) $= 180^{\circ} - \angle CQD \quad (\otimes \sharp \emptyset)$ = ∠CQP (平角定理) ⑨より、AP // QC (錯角定理) ⑦⑩より、1組の向かい合う辺が平行かつ等しいので、 APCQ は平行四辺形 (q.e.d.) [証明その2] 対角線 AC と BD の交点を M とする。 $BM = DM \qquad (4)$ ここで、PM = BM - BP $= DM - DQ \quad (24) \downarrow 0$ = QM③⑤より、対角線が互いに他を2等分するので、 APCQ は平行四辺形 (q.e.d.)

H4.3

(q.e.d.)

(1) △ABM≡△AHM を証明せよ。

「方針]

二角一対辺相等で示すことができます。

「証明」

 \triangle ABM $\geq \triangle$ AHM において

- (2) AE=AB+CE を証明せよ。

[方針]

(1)の \triangle ABM \equiv \triangle AHM より、AB=AH (合同の対応辺) なので、CE=HE を示せばよいです。そのためには、 \triangle ECM \equiv \triangle EHM を証明すればよいです。

「証明〕

 \triangle ECM と \triangle EHM において

- ⑦より、 BM = HM (合同の対応辺)
- (1),(4) \downarrow (1) \downarrow (2) \downarrow (3) \downarrow (4) \downarrow (4) \downarrow (5) \downarrow (5) \downarrow (6) \downarrow (7) \downarrow (11)
- ⑨,⑩,⑪より△ECM ≡△EHM (斜辺一辺相等)⑫