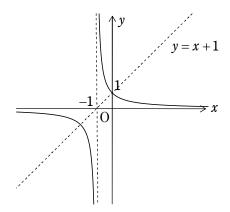
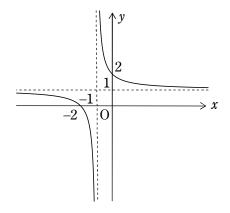
中3数学D 宿題解答 2学期-10

宿題 10-1

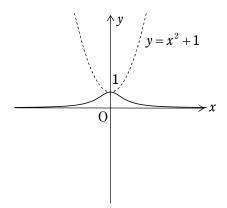
$$(1) y = \frac{1}{x+1}$$



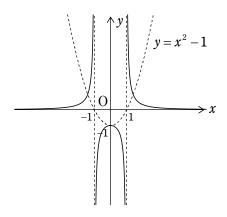
(2)
$$y = \frac{x+2}{x+1} = \frac{(x+1)+1}{x+1} = 1 + \frac{1}{x+1}$$
 のグラフは、(1)のグラフを y 軸方向に 1 平行移動したもの.



(3)
$$y = \frac{1}{x^2 + 1}$$



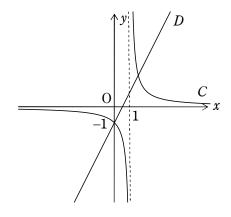
(4)
$$y = \frac{1}{x^2 - 1}$$



宿題 10-2

$$C: y = \frac{1}{x-1}, \quad D: y = 2x-1$$

(1)



(2) グラフの交点のx座標は

$$\frac{1}{x-1} = 2x - 1$$

の実数解である. これを解くと 1 = (2x-1)(x-1)

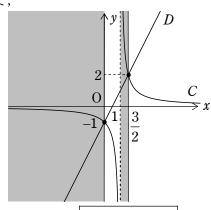
$$1 = 2x^2 - 3x + 1$$
$$x(2x - 3) = 0$$

$$\therefore x = 0, \frac{3}{2}$$

よって,交点は (0,-1), $\left(\frac{3}{2},2\right)$

$$(3) \qquad \frac{1}{x-1} \ge 2x - 1$$

の解は, C の方が, D よりも上にあるか, - 致しているような x 座標の範囲なので,



グラフより, $x \le 0, 1 < x \le \frac{3}{2}$

宿題 10-3

(1) h(x) = f(x) - x とおくと、h(x) は 2 次以下の整式であり、

$$h(1) = f(1) - 1 = 0$$

$$h(2) = f(2) - 2 = 0$$

であるから、h(x)は2次式

$$(x-1)(x-2)$$

で割り切れる. 商は定数なので, kとおくと,

$$h(x) = k(x-1)(x-2)$$

$$\therefore f(x) = k(x-1)(x-2) + x$$

である.

f(3) = 4 であるから,

$$4 = 2k + 3$$
 $\therefore k = \frac{1}{2}$

よって、
$$f(x) = \overline{\frac{1}{2}(x-1)(x-2)+x}$$
.

(2) x-1, x-2, x-3 で割った余りがそれぞれ1, 2, 4 であるから, 剰余定理より,

$$g(1) = 1, g(2) = 2, g(3) = 4$$
 …………①
である.

g(x) を(x-1)(x-2)(x-3) で割った商をq(x), 余りをr(x)とおくと、3 次式で割った余りなのでr(x) は2 次以下の整式であり、

$$g(x) = (x-1)(x-2)(x-3)q(x) + r(x)$$

 $\geq \bigcirc \downarrow \lor \lor$

$$r(1) = g(1) = 1$$

$$r(2) = g(2) = 2$$

$$r(3) = g(3) = 4$$

が成り立つ.

つまり、r(x)は(1)の整式 f(x)と同じ条件 を満たすので、(1)の結果より、

$$r(x) = \boxed{\frac{1}{2}(x-1)(x-2) + x}$$

である.

宿題 10-4#

(1)

(i) $x^3 - kx^2 + 4 = 0$ の, 重解を含めた 3 解が $x = \alpha, \alpha, \beta$ であるので,

$$x^3 - kx^2 + 4 = (x - \alpha)^2 (x - \beta)$$

と因数分解される.

(ii) 右辺を展開すると、xの整式としての 等式

$$x^3 - kx^2 + 4$$

= x^3 -(2α + β) x^2 +(α^2 + $2\alpha\beta$)x- $\alpha^2\beta$ が得られ、この両辺の係数を比較すれば、 α , β ,kの満たす方程式

$$\begin{cases} 2\alpha + \beta = k \\ \alpha^2 + 2\alpha\beta = 0 \\ \alpha^2\beta = -4 \end{cases}$$

を得る.

$$\alpha(\alpha + 2\beta) = 0$$

 $\alpha = 0$ または $\alpha = -2\beta$

 $\alpha = 0$

 $\alpha^2\beta = -4$ ······················

を満たさない.

 $\alpha = -2\beta$ を①に代入すると,

$$4\beta^3 = -4$$

$$\beta^3 + 1 = 0$$

$$(\beta+1)(\beta^2-\beta+1)=0$$

 $\beta^2 - \beta + 1 = 0$ は実数解をもたないので、

 $\beta = -1$

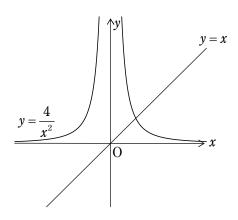
となり、このとき

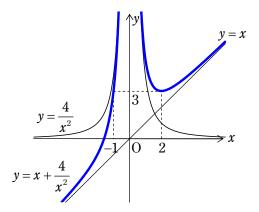
$$\alpha = -2\beta = 2$$

$$k = 2\alpha + \beta = 3$$

よって, $\alpha=2$, $\beta=-1$, k=3.

(2)





ここで、x>0の部分に現れる「折り返し地点」は、2のグラフと直線

y=k (kは定数) ……………… ③ の共有点が 2 個になるときの共有点の 1 つである.

②, ③の交点のx座標は, xの方程式

$$x + \frac{4}{x^2} = k$$
 $\therefore x^3 - kx^2 + 4 = 0$

の実数解であり、(1)より、これがちょう ど 2 個になるのは、k=3 のときのみであり(したがって、確かに上の図のように なっていることが分かる)、そのときの解はx=-1,2 である.

したがって,「折り返し地点」の座標は,

②と直線 y=3の交点 (-1,3),(2,3) のうち,

x座標が正の(あるいは右にある)方の(2,3).

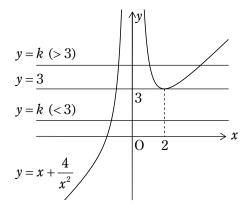
(4) x の方程式

$$x^3 - kx^2 + 4 = 0$$
 ……………………④ は、 $x = 0$ を解にもたないので、両辺を x^2 で割って、

$$x - k + \frac{4}{x^2} = 0 \qquad \therefore x + \frac{4}{x^2} = k$$

と書き換えられる. したがって、④の実数解は②、③のグラフの交点のx座標であり、異なる実数解の個数は異なる交点の個数に他ならない.

②, ③のグラフの交点の個数を数えると,



図より,

$$k < 3$$
 のとき 1個 $k = 3$ のとき 2個 $k > 3$ のとき 3個

となるので、これが求める実数解の個数である.